A genome-scale metabolic reconstruction of Lysinibacillus sphaericus unveils unexploited biotechnological potentials
نویسندگان
چکیده
منابع مشابه
A genome-scale metabolic reconstruction of Lysinibacillus sphaericus unveils unexploited biotechnological potentials
The toxic lineage (TL) of Lysinibacillus sphaericus has been extensively studied because of its potential biotechnological applications in biocontrol of mosquitoes and bioremediation of toxic metals. We previously proposed that L. sphaericus TL should be considered as a novel species based on a comparative genomic analysis. In the current work, we constructed the first manually curated metaboli...
متن کاملGenome Sequence of Lysinibacillus sphaericus Strain KCTC 3346T
Lysinibacillus sphaericus is a heterogeneous species that includes strains that produce mosquitocidal toxin proteins. Herein, we report the 4.56-Mb draft genome sequence of the nonpathogenic L. sphaericus strain KCTC 3346(T), which provides clues for the phylogenetic reassessment of L. sphaericus species and an understanding of its physiological properties.
متن کاملComplete Genome Sequence of Lysinibacillus sphaericus WHO Reference Strain 2362
Lysinibacillus sphaericus is a species that contains strains widely used in the biological control of mosquitoes. Here, we present the complete 4.67-Mb genome of the WHO entomopathogenic reference strain L. sphaericus 2362, which is probably one of the most commercialized and studied strains. Genes coding for mosquitocidal toxin proteins were detected.
متن کاملGenome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications
Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...
متن کاملComplete Genome Sequence of Lysinibacillus sphaericus B1-CDA, a Bacterium That Accumulates Arsenic
Here, we report the genomic sequence and genetic composition of an arsenic-resistant bacterium, Lysinibacillus sphaericus B1-CDA. Assembly of the sequencing reads revealed that the genome size is ~4.5 Mb, encompassing ~80% of the chromosomal DNA.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2017
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0179666